3.6.30 \(\int \sqrt {e x} (a+b x^3)^{3/2} (A+B x^3) \, dx\) [530]

Optimal. Leaf size=161 \[ \frac {a (6 A b-a B) (e x)^{3/2} \sqrt {a+b x^3}}{24 b e}+\frac {(6 A b-a B) (e x)^{3/2} \left (a+b x^3\right )^{3/2}}{36 b e}+\frac {B (e x)^{3/2} \left (a+b x^3\right )^{5/2}}{9 b e}+\frac {a^2 (6 A b-a B) \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {b} (e x)^{3/2}}{e^{3/2} \sqrt {a+b x^3}}\right )}{24 b^{3/2}} \]

[Out]

1/36*(6*A*b-B*a)*(e*x)^(3/2)*(b*x^3+a)^(3/2)/b/e+1/9*B*(e*x)^(3/2)*(b*x^3+a)^(5/2)/b/e+1/24*a^2*(6*A*b-B*a)*ar
ctanh((e*x)^(3/2)*b^(1/2)/e^(3/2)/(b*x^3+a)^(1/2))*e^(1/2)/b^(3/2)+1/24*a*(6*A*b-B*a)*(e*x)^(3/2)*(b*x^3+a)^(1
/2)/b/e

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 161, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {470, 285, 335, 281, 223, 212} \begin {gather*} \frac {a^2 \sqrt {e} (6 A b-a B) \tanh ^{-1}\left (\frac {\sqrt {b} (e x)^{3/2}}{e^{3/2} \sqrt {a+b x^3}}\right )}{24 b^{3/2}}+\frac {(e x)^{3/2} \left (a+b x^3\right )^{3/2} (6 A b-a B)}{36 b e}+\frac {a (e x)^{3/2} \sqrt {a+b x^3} (6 A b-a B)}{24 b e}+\frac {B (e x)^{3/2} \left (a+b x^3\right )^{5/2}}{9 b e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*x]*(a + b*x^3)^(3/2)*(A + B*x^3),x]

[Out]

(a*(6*A*b - a*B)*(e*x)^(3/2)*Sqrt[a + b*x^3])/(24*b*e) + ((6*A*b - a*B)*(e*x)^(3/2)*(a + b*x^3)^(3/2))/(36*b*e
) + (B*(e*x)^(3/2)*(a + b*x^3)^(5/2))/(9*b*e) + (a^2*(6*A*b - a*B)*Sqrt[e]*ArcTanh[(Sqrt[b]*(e*x)^(3/2))/(e^(3
/2)*Sqrt[a + b*x^3])])/(24*b^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 285

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Dist[a*n*(p/(m + n*p + 1)), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rubi steps

\begin {align*} \int \sqrt {e x} \left (a+b x^3\right )^{3/2} \left (A+B x^3\right ) \, dx &=\frac {B (e x)^{3/2} \left (a+b x^3\right )^{5/2}}{9 b e}-\frac {\left (-9 A b+\frac {3 a B}{2}\right ) \int \sqrt {e x} \left (a+b x^3\right )^{3/2} \, dx}{9 b}\\ &=\frac {(6 A b-a B) (e x)^{3/2} \left (a+b x^3\right )^{3/2}}{36 b e}+\frac {B (e x)^{3/2} \left (a+b x^3\right )^{5/2}}{9 b e}+\frac {(a (6 A b-a B)) \int \sqrt {e x} \sqrt {a+b x^3} \, dx}{8 b}\\ &=\frac {a (6 A b-a B) (e x)^{3/2} \sqrt {a+b x^3}}{24 b e}+\frac {(6 A b-a B) (e x)^{3/2} \left (a+b x^3\right )^{3/2}}{36 b e}+\frac {B (e x)^{3/2} \left (a+b x^3\right )^{5/2}}{9 b e}+\frac {\left (a^2 (6 A b-a B)\right ) \int \frac {\sqrt {e x}}{\sqrt {a+b x^3}} \, dx}{16 b}\\ &=\frac {a (6 A b-a B) (e x)^{3/2} \sqrt {a+b x^3}}{24 b e}+\frac {(6 A b-a B) (e x)^{3/2} \left (a+b x^3\right )^{3/2}}{36 b e}+\frac {B (e x)^{3/2} \left (a+b x^3\right )^{5/2}}{9 b e}+\frac {\left (a^2 (6 A b-a B)\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {a+\frac {b x^6}{e^3}}} \, dx,x,\sqrt {e x}\right )}{8 b e}\\ &=\frac {a (6 A b-a B) (e x)^{3/2} \sqrt {a+b x^3}}{24 b e}+\frac {(6 A b-a B) (e x)^{3/2} \left (a+b x^3\right )^{3/2}}{36 b e}+\frac {B (e x)^{3/2} \left (a+b x^3\right )^{5/2}}{9 b e}+\frac {\left (a^2 (6 A b-a B)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b x^2}{e^3}}} \, dx,x,(e x)^{3/2}\right )}{24 b e}\\ &=\frac {a (6 A b-a B) (e x)^{3/2} \sqrt {a+b x^3}}{24 b e}+\frac {(6 A b-a B) (e x)^{3/2} \left (a+b x^3\right )^{3/2}}{36 b e}+\frac {B (e x)^{3/2} \left (a+b x^3\right )^{5/2}}{9 b e}+\frac {\left (a^2 (6 A b-a B)\right ) \text {Subst}\left (\int \frac {1}{1-\frac {b x^2}{e^3}} \, dx,x,\frac {(e x)^{3/2}}{\sqrt {a+b x^3}}\right )}{24 b e}\\ &=\frac {a (6 A b-a B) (e x)^{3/2} \sqrt {a+b x^3}}{24 b e}+\frac {(6 A b-a B) (e x)^{3/2} \left (a+b x^3\right )^{3/2}}{36 b e}+\frac {B (e x)^{3/2} \left (a+b x^3\right )^{5/2}}{9 b e}+\frac {a^2 (6 A b-a B) \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {b} (e x)^{3/2}}{e^{3/2} \sqrt {a+b x^3}}\right )}{24 b^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.29, size = 120, normalized size = 0.75 \begin {gather*} \frac {x \sqrt {e x} \sqrt {a+b x^3} \left (30 a A b+3 a^2 B+12 A b^2 x^3+14 a b B x^3+8 b^2 B x^6\right )}{72 b}-\frac {a^2 (-6 A b+a B) \sqrt {e x} \tanh ^{-1}\left (\frac {\sqrt {a+b x^3}}{\sqrt {b} x^{3/2}}\right )}{24 b^{3/2} \sqrt {x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*x]*(a + b*x^3)^(3/2)*(A + B*x^3),x]

[Out]

(x*Sqrt[e*x]*Sqrt[a + b*x^3]*(30*a*A*b + 3*a^2*B + 12*A*b^2*x^3 + 14*a*b*B*x^3 + 8*b^2*B*x^6))/(72*b) - (a^2*(
-6*A*b + a*B)*Sqrt[e*x]*ArcTanh[Sqrt[a + b*x^3]/(Sqrt[b]*x^(3/2))])/(24*b^(3/2)*Sqrt[x])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 0.52, size = 7290, normalized size = 45.28

method result size
risch \(\text {Expression too large to display}\) \(1080\)
elliptic \(\text {Expression too large to display}\) \(1183\)
default \(\text {Expression too large to display}\) \(7290\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a)^(3/2)*(B*x^3+A)*(e*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 290 vs. \(2 (111) = 222\).
time = 0.51, size = 290, normalized size = 1.80 \begin {gather*} -\frac {1}{144} \, {\left (6 \, {\left (\frac {3 \, a^{2} \log \left (-\frac {\sqrt {b} - \frac {\sqrt {b x^{3} + a}}{x^{\frac {3}{2}}}}{\sqrt {b} + \frac {\sqrt {b x^{3} + a}}{x^{\frac {3}{2}}}}\right )}{\sqrt {b}} + \frac {2 \, {\left (\frac {3 \, \sqrt {b x^{3} + a} a^{2} b}{x^{\frac {3}{2}}} - \frac {5 \, {\left (b x^{3} + a\right )}^{\frac {3}{2}} a^{2}}{x^{\frac {9}{2}}}\right )}}{b^{2} - \frac {2 \, {\left (b x^{3} + a\right )} b}{x^{3}} + \frac {{\left (b x^{3} + a\right )}^{2}}{x^{6}}}\right )} A - {\left (\frac {3 \, a^{3} \log \left (-\frac {\sqrt {b} - \frac {\sqrt {b x^{3} + a}}{x^{\frac {3}{2}}}}{\sqrt {b} + \frac {\sqrt {b x^{3} + a}}{x^{\frac {3}{2}}}}\right )}{b^{\frac {3}{2}}} + \frac {2 \, {\left (\frac {3 \, \sqrt {b x^{3} + a} a^{3} b^{2}}{x^{\frac {3}{2}}} - \frac {8 \, {\left (b x^{3} + a\right )}^{\frac {3}{2}} a^{3} b}{x^{\frac {9}{2}}} - \frac {3 \, {\left (b x^{3} + a\right )}^{\frac {5}{2}} a^{3}}{x^{\frac {15}{2}}}\right )}}{b^{4} - \frac {3 \, {\left (b x^{3} + a\right )} b^{3}}{x^{3}} + \frac {3 \, {\left (b x^{3} + a\right )}^{2} b^{2}}{x^{6}} - \frac {{\left (b x^{3} + a\right )}^{3} b}{x^{9}}}\right )} B\right )} e^{\frac {1}{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(3/2)*(B*x^3+A)*(e*x)^(1/2),x, algorithm="maxima")

[Out]

-1/144*(6*(3*a^2*log(-(sqrt(b) - sqrt(b*x^3 + a)/x^(3/2))/(sqrt(b) + sqrt(b*x^3 + a)/x^(3/2)))/sqrt(b) + 2*(3*
sqrt(b*x^3 + a)*a^2*b/x^(3/2) - 5*(b*x^3 + a)^(3/2)*a^2/x^(9/2))/(b^2 - 2*(b*x^3 + a)*b/x^3 + (b*x^3 + a)^2/x^
6))*A - (3*a^3*log(-(sqrt(b) - sqrt(b*x^3 + a)/x^(3/2))/(sqrt(b) + sqrt(b*x^3 + a)/x^(3/2)))/b^(3/2) + 2*(3*sq
rt(b*x^3 + a)*a^3*b^2/x^(3/2) - 8*(b*x^3 + a)^(3/2)*a^3*b/x^(9/2) - 3*(b*x^3 + a)^(5/2)*a^3/x^(15/2))/(b^4 - 3
*(b*x^3 + a)*b^3/x^3 + 3*(b*x^3 + a)^2*b^2/x^6 - (b*x^3 + a)^3*b/x^9))*B)*e^(1/2)

________________________________________________________________________________________

Fricas [A]
time = 2.63, size = 258, normalized size = 1.60 \begin {gather*} \left [-\frac {3 \, {\left (B a^{3} - 6 \, A a^{2} b\right )} \sqrt {b} e^{\frac {1}{2}} \log \left (-8 \, b^{2} x^{6} - 8 \, a b x^{3} - 4 \, {\left (2 \, b x^{4} + a x\right )} \sqrt {b x^{3} + a} \sqrt {b} \sqrt {x} - a^{2}\right ) - 4 \, {\left (8 \, B b^{3} x^{7} + 2 \, {\left (7 \, B a b^{2} + 6 \, A b^{3}\right )} x^{4} + 3 \, {\left (B a^{2} b + 10 \, A a b^{2}\right )} x\right )} \sqrt {b x^{3} + a} \sqrt {x} e^{\frac {1}{2}}}{288 \, b^{2}}, \frac {3 \, {\left (B a^{3} - 6 \, A a^{2} b\right )} \sqrt {-b} \arctan \left (\frac {2 \, \sqrt {b x^{3} + a} \sqrt {-b} x^{\frac {3}{2}}}{2 \, b x^{3} + a}\right ) e^{\frac {1}{2}} + 2 \, {\left (8 \, B b^{3} x^{7} + 2 \, {\left (7 \, B a b^{2} + 6 \, A b^{3}\right )} x^{4} + 3 \, {\left (B a^{2} b + 10 \, A a b^{2}\right )} x\right )} \sqrt {b x^{3} + a} \sqrt {x} e^{\frac {1}{2}}}{144 \, b^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(3/2)*(B*x^3+A)*(e*x)^(1/2),x, algorithm="fricas")

[Out]

[-1/288*(3*(B*a^3 - 6*A*a^2*b)*sqrt(b)*e^(1/2)*log(-8*b^2*x^6 - 8*a*b*x^3 - 4*(2*b*x^4 + a*x)*sqrt(b*x^3 + a)*
sqrt(b)*sqrt(x) - a^2) - 4*(8*B*b^3*x^7 + 2*(7*B*a*b^2 + 6*A*b^3)*x^4 + 3*(B*a^2*b + 10*A*a*b^2)*x)*sqrt(b*x^3
 + a)*sqrt(x)*e^(1/2))/b^2, 1/144*(3*(B*a^3 - 6*A*a^2*b)*sqrt(-b)*arctan(2*sqrt(b*x^3 + a)*sqrt(-b)*x^(3/2)/(2
*b*x^3 + a))*e^(1/2) + 2*(8*B*b^3*x^7 + 2*(7*B*a*b^2 + 6*A*b^3)*x^4 + 3*(B*a^2*b + 10*A*a*b^2)*x)*sqrt(b*x^3 +
 a)*sqrt(x)*e^(1/2))/b^2]

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 335 vs. \(2 (138) = 276\).
time = 15.05, size = 335, normalized size = 2.08 \begin {gather*} \frac {A a^{\frac {3}{2}} \left (e x\right )^{\frac {3}{2}} \sqrt {1 + \frac {b x^{3}}{a}}}{3 e} + \frac {A a^{\frac {3}{2}} \left (e x\right )^{\frac {3}{2}}}{12 e \sqrt {1 + \frac {b x^{3}}{a}}} + \frac {A \sqrt {a} b \left (e x\right )^{\frac {9}{2}}}{4 e^{4} \sqrt {1 + \frac {b x^{3}}{a}}} + \frac {A a^{2} \sqrt {e} \operatorname {asinh}{\left (\frac {\sqrt {b} \left (e x\right )^{\frac {3}{2}}}{\sqrt {a} e^{\frac {3}{2}}} \right )}}{4 \sqrt {b}} + \frac {A b^{2} \left (e x\right )^{\frac {15}{2}}}{6 \sqrt {a} e^{7} \sqrt {1 + \frac {b x^{3}}{a}}} + \frac {B a^{\frac {5}{2}} \left (e x\right )^{\frac {3}{2}}}{24 b e \sqrt {1 + \frac {b x^{3}}{a}}} + \frac {17 B a^{\frac {3}{2}} \left (e x\right )^{\frac {9}{2}}}{72 e^{4} \sqrt {1 + \frac {b x^{3}}{a}}} + \frac {11 B \sqrt {a} b \left (e x\right )^{\frac {15}{2}}}{36 e^{7} \sqrt {1 + \frac {b x^{3}}{a}}} - \frac {B a^{3} \sqrt {e} \operatorname {asinh}{\left (\frac {\sqrt {b} \left (e x\right )^{\frac {3}{2}}}{\sqrt {a} e^{\frac {3}{2}}} \right )}}{24 b^{\frac {3}{2}}} + \frac {B b^{2} \left (e x\right )^{\frac {21}{2}}}{9 \sqrt {a} e^{10} \sqrt {1 + \frac {b x^{3}}{a}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a)**(3/2)*(B*x**3+A)*(e*x)**(1/2),x)

[Out]

A*a**(3/2)*(e*x)**(3/2)*sqrt(1 + b*x**3/a)/(3*e) + A*a**(3/2)*(e*x)**(3/2)/(12*e*sqrt(1 + b*x**3/a)) + A*sqrt(
a)*b*(e*x)**(9/2)/(4*e**4*sqrt(1 + b*x**3/a)) + A*a**2*sqrt(e)*asinh(sqrt(b)*(e*x)**(3/2)/(sqrt(a)*e**(3/2)))/
(4*sqrt(b)) + A*b**2*(e*x)**(15/2)/(6*sqrt(a)*e**7*sqrt(1 + b*x**3/a)) + B*a**(5/2)*(e*x)**(3/2)/(24*b*e*sqrt(
1 + b*x**3/a)) + 17*B*a**(3/2)*(e*x)**(9/2)/(72*e**4*sqrt(1 + b*x**3/a)) + 11*B*sqrt(a)*b*(e*x)**(15/2)/(36*e*
*7*sqrt(1 + b*x**3/a)) - B*a**3*sqrt(e)*asinh(sqrt(b)*(e*x)**(3/2)/(sqrt(a)*e**(3/2)))/(24*b**(3/2)) + B*b**2*
(e*x)**(21/2)/(9*sqrt(a)*e**10*sqrt(1 + b*x**3/a))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 272 vs. \(2 (111) = 222\).
time = 0.75, size = 272, normalized size = 1.69 \begin {gather*} \frac {1}{72} \, {\left (6 \, \sqrt {b x^{3} + a} {\left (2 \, x^{3} + \frac {a}{b}\right )} B a x^{\frac {3}{2}} + 6 \, \sqrt {b x^{3} + a} {\left (2 \, x^{3} + \frac {a}{b}\right )} A b x^{\frac {3}{2}} + {\left (2 \, {\left (4 \, x^{3} + \frac {a}{b}\right )} x^{3} - \frac {3 \, a^{2}}{b^{2}}\right )} \sqrt {b x^{3} + a} B b x^{\frac {3}{2}} + 24 \, {\left (\sqrt {b x^{3} + a} x^{\frac {3}{2}} - \frac {a \log \left ({\left | -\sqrt {b} x^{\frac {3}{2}} + \sqrt {b x^{3} + a} \right |}\right )}{\sqrt {b}}\right )} A a\right )} e^{\frac {1}{2}} - \frac {{\left (B^{2} a^{6} + 4 \, A B a^{5} b + 4 \, A^{2} a^{4} b^{2}\right )} e^{\frac {1}{2}} \log \left ({\left | {\left (B a^{3} x^{\frac {3}{2}} + 2 \, A a^{2} b x^{\frac {3}{2}}\right )} \sqrt {b} + \sqrt {B^{2} a^{7} + 4 \, A B a^{6} b + 4 \, A^{2} a^{5} b^{2} + {\left (B a^{3} x^{\frac {3}{2}} + 2 \, A a^{2} b x^{\frac {3}{2}}\right )}^{2} b} \right |}\right )}{24 \, b^{\frac {3}{2}} {\left | B a^{3} + 2 \, A a^{2} b \right |}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(3/2)*(B*x^3+A)*(e*x)^(1/2),x, algorithm="giac")

[Out]

1/72*(6*sqrt(b*x^3 + a)*(2*x^3 + a/b)*B*a*x^(3/2) + 6*sqrt(b*x^3 + a)*(2*x^3 + a/b)*A*b*x^(3/2) + (2*(4*x^3 +
a/b)*x^3 - 3*a^2/b^2)*sqrt(b*x^3 + a)*B*b*x^(3/2) + 24*(sqrt(b*x^3 + a)*x^(3/2) - a*log(abs(-sqrt(b)*x^(3/2) +
 sqrt(b*x^3 + a)))/sqrt(b))*A*a)*e^(1/2) - 1/24*(B^2*a^6 + 4*A*B*a^5*b + 4*A^2*a^4*b^2)*e^(1/2)*log(abs((B*a^3
*x^(3/2) + 2*A*a^2*b*x^(3/2))*sqrt(b) + sqrt(B^2*a^7 + 4*A*B*a^6*b + 4*A^2*a^5*b^2 + (B*a^3*x^(3/2) + 2*A*a^2*
b*x^(3/2))^2*b)))/(b^(3/2)*abs(B*a^3 + 2*A*a^2*b))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \left (B\,x^3+A\right )\,\sqrt {e\,x}\,{\left (b\,x^3+a\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x^3)*(e*x)^(1/2)*(a + b*x^3)^(3/2),x)

[Out]

int((A + B*x^3)*(e*x)^(1/2)*(a + b*x^3)^(3/2), x)

________________________________________________________________________________________